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MEASUREMENT OF THERMAL DIFFUSIVITY  

UNDER CONDITIONS OF ORDERED HEAT TRANSFER. 

Objective of the Exercise 

A. Present the physical interpretation of thermal diffusivity as a coefficient of temperature 

equalisation in heat conduction phenomena.  

B. To familiarise with the possibility of using special heat exchange conditions - in this case, 

phenomena associated with the so-called ordered heat exchange - to determine the 

thermophysical properties of substances.  

C. To illustrate the relationship between thermal diffusivity and the time constants of thermal signals, 

as well as its connections with other thermophysical properties of substances, particularly thermal 

conductivity.  

D. To present an example of compensating adverse metrological phenomena of complex heat 

exchange in the study of thermophysical properties. 

 

1. Thermal diffusivity 

Thermal diffusivity, also known as the temperature equalisation coefficient [5, 8, 9], or directly 
referring to the English term "thermal diffusivity" [4], is one of the fundamental thermophysical 
parameters. The basis for defining thermal diffusivity is the differential equation of unsteady heat 
conduction for an isotropic body. This is the previously cited Fourier-Kirchhoff equation, which in a 
Cartesian coordinate system takes the form: 
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where: ρ is the density, 𝑐𝑝 is the specific heat at constant pressure, 𝑇 is the temperature, τ is the time, 𝑉 

is the volume, λ is the thermal conductivity, 𝑞𝑉 is the volumetric efficiency of the internal heat source, 𝑥,
𝑦, 𝑧 are spatial coordinates. Thermal diffusivity a is defined as 

𝑎 ≡
𝜆

𝜌𝑐𝑝

(2) 

From the above, it is evident that even when limited to the case of an isotropic medium, the direct physical 
interpretation of thermal diffusivity is limited to the proportional parameters presented in the defining 
relationship (2). Assuming thermal conductivity is independent of temperature: 

𝜕𝜆

𝜕𝑇
= 0 (3) 

and in the absence of internal heat sources: 

𝑞𝑉 = 0 (4) 

equation (1) takes the form of the Fourier differential equation [2, 10]: 

𝜕𝑇

𝜕𝜏
= 𝑎∇2𝑇 (5) 

The Fourier equation gives thermal diffusivity the physical sense of a parameter characterising the 
kinetics of heat exchange processes through conduction, simply the substance's ability to equalise 
temperature in heat conduction processes. This direct interpretation applies only to the case limited by 
conditions (3) and (4).  
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The concept of thermal diffusivity can also be introduced for orthotropic bodies where heat 
conduction is characterised by the thermal conductivity tensor λ𝑖𝑗 with three components. Generally, this 

imposes the constraint: 

𝜕𝜆𝑖𝑗

𝜕𝑇
= 0 (6) 

Complementarily with condition (3), to ultimately obtain the relationship: 

𝜕𝑇

𝜕𝜏
= 𝑎𝑖𝑗∇2𝑇 (7) 

where: 

𝑎𝑖𝑗 ≡
𝜆𝑖𝑗

𝜌𝑐𝑝

(8) 

In the case of orthotropic bodies, obtaining analytical solutions to the heat conduction problem is 
much more difficult than for an isotropic medium. On the other hand, only an analytical solution can form 
the basis for developing a general method for studying thermal diffusivity. 

2. Experimental Studies of Thermal Diffusivity 

Fourier's equation (5) plays a crucial role in the direct determination of the thermal diffusivity. Most 
experimental methods of this type use solutions to problems described by Equation (5) along with 
additional formulated boundary conditions (both boundary and initial) [2-4, 6, 8]. Methodological 
differences are essentially limited to the type of boundary conditions assumed in the model, possible 
simplifications of the obtained solutions, and the way the model assumptions are implemented in a real 
experiment. It is worth noting that in terms of the geometry of the model, Fourier's equation (5) is general 
in nature: it can be applied not only in the Cartesian coordinate system, but also in cylindrical and spherical 
systems, depending on the form of the Laplacian ∇²=∆ (see [10], p. 27).  

Indirect methods provide an alternative to direct methods. In this case, experimental studies 
determine density, specific heat at constant pressure, and thermal conductivity. The thermal diffusivity is 
calculated using Equation (2). In the extended interpretation of thermal diffusivity, the variability of 
individual thermal properties with temperature is considered: 

𝑎(𝑇) =
𝜆(𝑇)

𝜌(𝑇)𝑐𝑝(𝑇)
⇔ 𝜆(𝑇) = 𝜌(𝑇) ∙ 𝑎(𝑇) ∙ 𝑐𝑝(𝑇) (9) 

The question of the variability of thermophysical parameters with temperature and the impact of this 
variability on the results of thermal characteristics according to equation (9) falls within the broader class 
of issues related to the thermal resolution of measurements of thermal properties measurements [5]. A 
detailed discussion of these issues is beyond the scope of this study. A brief comment should simply state 
that, generally, specific heat, thermal conductivity, and thermal diffusivity exhibit the greatest relative 
variability. Changes in these properties should be considered when temperature changes exceed a few 
tens of kelvins at room temperature. Changes in density become significant with temperature differences 
on the order of several hundred kelvins.  

Since the method of studying thermal diffusivity under conditions of orderly heat exchange, also 
known as the method of monotonic thermal excitation (see [11]), is a direct method, attention will be 
paid to it in the following sections. In addition to characterising both methods, it should be noted that the 
main disadvantage of indirect methods is the propagation of measurement errors of each component 
quantity, affecting the accuracy of the calculated diffusivity. Furthermore, it is important to ensure the 
correlation of methods to determine density, specific heat, and thermal conductivity so that the diffusivity 
calculated based on expression (9) retains its character as an instantaneous property. This primarily 
concerns maintaining the appropriate thermal (temperature) resolution of the measurement (see, e.g., 
[5]). 
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Direct methods are mostly free of the above-mentioned disadvantages. Unlike time-consuming 
thermal conductivity measurements, experiments do not take too long. In most cases, measurements can 
be performed on very small samples, with dimensions on the order of millimetres, and high resolution 
can be achieved. However, determining thermal diffusivity based on recorded signals requires the use of 
rather complex data processing procedures, both mathematically and numerically. Since it is necessary to 
study time-varying signals, the research systems are relatively expensive and complex.  

Applying the direct method of measuring thermal diffusivity involves analysing the time-varying 
temperature field with time variations, which follows from the nature of equation (5). Thus, in addition to 
the problem of recording thermal signals, the issue of thermal excitation must be addressed. Depending 
on how thermal excitation is implemented, direct methods can be divided into [4]: 

I. Methods of unsteady/transient nonperiodic states: 

- Impulse methods; 

- Monotonic methods; 

- Transient state methods with other aperiodic excitation (hot wire, hot disk/hot disk, flat source, 
rectangular, etc.). 

II. Methods of periodic excitations: 

- Thermal wave methods; 

- Periodic excitations using electron beams.  

Group I includes impulse methods [3, 4, 9] and methods of monotonic thermal excitation [3, 11]. The 
second group includes thermal wave methods and methods where the excitation source is an amplitude-
modulated electron beam. In the first case, the basis for distinction is the measurement methodology, 
while in the second group the differences are mainly in the construction of the apparatus and the 
associated different research scopes. The thermal wave method is mainly used in low- and medium-
temperature studies, while the electron-beam bombardment method, similar to the impulse method, 
dominates high-temperature measurements. 

The subject of the exercise is the measurement of the thermal diffusivity using a modified method of 
monotonic thermal excitation with step excitation (Heaviside). Monotonic thermal excitation methods, 
that is, methods for studying under conditions of orderly heat exchange [10, 11], are characterised by 
relatively simple experimental methodology and instrumentation for measurements carried out at low 
temperatures1. Unfortunately, this is associated with increased measurement errors and the limitation of 
the range of tested materials to those with relatively low thermal conductivity for medium temperature 
studies2. The relative error of typical measurements ranges from 2% to even 12%, with typical inaccuracies 
of 1.5% to 5% for measurements conducted under comparable conditions by the impulse method, 1% to 
9% by the thermal wave method, and 2% to 10% by the electron bombardment method. 

 

 

 

1 This does not apply to high-temperature studies or studies conducted in the cryogenic temperature range. 
 
2 Primarily, this pertains to research within the typical operational ambient temperature range, from a few dozen 
degrees Celsius below zero to several dozen or a couple of hundred (one hundred to two hundred) degrees above 
zero. 



LABORATORY OF THERMODYNAMICS 

MEASUREMENT OF THERMAL DIFFUSIVITY   
UNDER CONDITIONS OF ORDERED HEAT TRANSFER 

L13 - 4 

3. Ordered Heat Transfer in the Context of the Monotonic Thermal Excitation 
Method 

The theoretical basis of monotonic methods is the theory of ordered heat transfer formulated by 
Kondratyev [10]. In the English literature, this theory is commonly referred to as the "regular heating 
regime" ([4] p. 304 / [11]).  

Kondratyev's theory is based on the observation that initial conditions influence the development of 
the temperature field and temperature changes only in the initial stage of the temperature equalisation 
process. After the transient period, the temperature field and temperature changes depend solely on the 
properties of the object under study and the boundary conditions, which also include the properties of 
the surroundings. When temperature changes on the boundary of the considered object have a regular 
character, analysing the temperature changes within the object allows the determination of individual 
thermophysical parameters, including thermal diffusivity.  

The mathematical justification for the theory of ordered heat transfer is based on the analysis of 
solutions to unsteady heat transfer problems. Using Fourier series theory, a typical analytical solution with 
separated variables for step excitation can be expressed as [2]: 

𝜃(𝜉, 𝜏) = ∑ 𝐴𝑛Φ𝑛(𝜉, 𝜇𝑛)exp [−𝜇𝑛
2

𝑎𝜏

𝑙2 ]

∞

𝑛=1

= ∑ 𝐴𝑛Φ𝑛(𝜉, 𝜇𝑛)exp[−𝜇𝑛
2𝐹𝑜]

∞

𝑛=1

(10) 

where θ(ξ,τ) is the dimensionless temperature (normalised temperature excess), which is a temperature 
relative to, for example, a given characteristic temperature or changes in maximum temperature: 

𝜃(𝜉, 𝜏) =
𝑇(𝜉, 𝜇𝑛) − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑘𝑠 − 𝑇𝑚𝑖𝑛

(11) 

Tmax i Tmin are the maximum and minimum temperatures, respectively, ξ \) is a spatial variable associated 
with the distinguished direction, l is the characteristic dimension of the object in the given direction (e.g., 
thickness of a plate, radius of a cylinder, etc.), (An) is a sequence of constants, (Φn) is a sequence of 
functions dependent only on spatial variables, (μn) — is an increasing sequence of numbers: 

𝜇1 < 𝜇2 < 𝜇3 < ⋯ (12) 

which are solutions to the characteristic equation associated with the given heat transfer problem, while 
Fo is the Fourier number: 

𝐹𝑜 =
𝑎𝜏

𝑙2
(13) 

A notable feature of the functional series (10), due to the strong monotonicity properties of the numerical 
series (12) and the presence of the series terms μn, in the exponents of the subsequent exponents raised 
to the power of 2, is the rapid decrease in the influence of higher-order components as time τ increases. 
For τ  exceeding a certain specified value, the solution 

𝜃(𝜉, 𝜏) = 𝐴1Φ1(𝜉, 𝜇1)exp [−𝜇1
2

𝑎𝜏

𝑙2 ] + 𝐴2Φ2(𝜉, 𝜇2)exp [−𝜇2
2

𝑎𝜏

𝑙2 ] + 𝐴3Φ3(𝜉, 𝜇3)exp [−𝜇3
2

𝑎𝜏

𝑙2 ] + ⋯ (14) 

can be approximated by a first-order approximation [10, 11]: 

𝜃(𝜉, 𝜏) ≅ 𝐴1Φ1(𝜉, 𝜇1)exp [−𝜇1
2

𝑎𝜏

𝑙2 ] = 𝐴1Φ1(𝜉, 𝜇1)exp[−𝑏𝜏] (15) 

where b is the temperature change rate (heating/cooling rate): 

𝑏 = 𝜇1
2

𝑎𝜏

𝑙2
=

1

𝜏𝑐ℎ
⇒ 𝑎 =

𝑙2

𝜇1
2 𝜏𝑐ℎ =

𝑙2

𝜇1
2

1

𝑏
 (16) 

The rate of temperature change is the reciprocal of an arbitrarily introduced characteristic time of the 
temperature equalisation process τch.  
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In ordered heat transfer (τ >τu)  the course of normalised temperature excess (14) under step 
excitation therefore approaches the exponential course (15). The literature provides the following 
condition for the regular heat transfer regime [11]: 

𝐹𝑜 > 𝐹𝑜𝑢 =
𝑎 ⋅ 𝜏𝑢

𝑙2
= 0,4 (17) 

An example of changes over time in the normalised temperature excess is shown in Figure 1. The 
coefficient b, the rate of change rate—contains information about the properties of the body, reduced in 
the case described by Fourier's equation to thermal diffusivity and boundary conditions. Its determination 
does not pose significant difficulties. This can be done using an approximation of the course with a 
function containing an exponential term (Fig. 1.a) or by analysing the logarithmic signal. In the latter case, 
determining the coefficient b reduces to finding the slope of the linear segment that overlaps the 
measurement points in the ordered heat transfer area (Fig. 1.b; a method often used in the graphical 
analysis of measurement signals).  

 

Fig. 1. Illustration of the normalised temperature excess for a cylinder subjected to a step surface 
temperature change: a, changes in temperature as a function of dimensionless time, and b, logarithmic 

plot of temperature changes. 

 

Fig. 2. Comparison of (a) step and (b) linear excitation in monotonic heating/cooling methods. 
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4. Monotonic Thermal Excitation Method with Step Excitation and Modified 
"Two-Fluids" Method 

Monotonic thermal excitation can be implemented in various ways. In typical cases, the above-
mentioned step and linear excitations are used [11] (see Fig. 2). It is possible to implement other types of 
monotonic excitation, but only the two mathematical models mentioned at the beginning fall within the 
class of problems discussed in the previous chapter. Studies with step excitation (Heaviside) are 
characterised by a particularly simple methodology. 

4.1. Classic-Step Excitation Method 

For temperatures slightly deviating from room temperature, "step" measurements of diffusivity are 
performed by placing the stabilised and temperature-equalised test object into a fluid of a different 
temperature. The initial condition thus takes the form: 

𝑇(𝒓, 𝜏)|𝜏=0 = 𝑇(𝒓, 0) = 𝑇0 (18) 

where r=[x, y, z] is the position vector. The boundary condition on the surface S is of the third kind 
(Newton's law [11]): 

𝜕𝑇

𝜕𝒏
|

𝑆
= −

𝛼

𝜆
(𝑇|𝑆 − 𝑇𝑝) (19) 

where n locally denotes the normal direction to the surface S, α is the heat transfer coefficient and T is 
the fluid temperature. The cooling rate in this case depends both on the thermal diffusivity a and the heat 
transfer coefficient 𝛼, expressed by the Fourier number (13) and the Biot number: 

𝐵𝑖 =
𝛼 ⋅ 𝑙

𝜆
(20) 

During the experiment, the temperature change of a selected point in the body is recorded. After 
determining the rate of temperature change under ordered heat transfer b or, alternatively, the time 
constant τch:  

𝑏 =
1

𝜏𝑐ℎ
= 𝑓(𝐹𝑜, 𝐵𝑖) (21) 

Thermal diffusivity can be calculated. Further analysis is based on solutions to initial-boundary problems 
with Fourier's equation with solutions in the general form (10) or (15) after simplification. Problems are 
formulated for the following model geometries [6, 11]: 

I. A flat infinite plate of thickness 2δ.  

II. An infinite cylinder with radius R and diameter D = 2R.  

III. A sphere with radius R and diameter D = 2R.  

IV. A cylinder with radius R and length 2l.  

V. A rectangular prism with dimensions 2l1, 2l2, and 2l3.  

VI. A cylinder with R and length 2l made of orthotropic material with two different components 

of the diffusivity tensor and an axis orientated perpendicular to the plane defined by the main 

directions with equal diffusivity values.  

VII. Three rectangular prisms of orthotropic material with edges aligned with the main axes of the 

material texture and edge proportions of 1:2:3, 1:2:2, and 1:1:2, respectively.  

Solutions are sought for selected, characteristic points of the object. Typically, this is the central point 
defined by the intersection of the symmetry axes of the object analysed. 

A. The problem solution is determined for a finite Biot number, and then the value of this number is 

calculated on the known properties of the fluid and the experimental conditions (convection heat 

transfer conditions on the surface of the analysed object). Introducing the calculated value into 
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the obtained solution allows the number of unknowns in Equation (20) to be reduced to one: the 

Fourier number Fo containing thermal diffusivity.  

 

B. An infinite Biot number is assumed, and the experimental conditions are adjusted accordingly. For 

an infinite Bi value, which in practice means satisfying the condition: 

𝐵𝑖 > 100 (22) 

(see [11] - Meeting this condition guarantees 2% measurement accuracy of a), the third-kind 

boundary condition asymptotically transforms into a first-kind condition:  

𝑇|𝑆 = 𝑇𝑝 (23) 

Formulas to convert the rate of temperature change (or alternatively the characteristic time) to 

the material of the diffusivity of the tested object are provided in Table 1.  

In practical research, determining the exact value of the Biot number using Method A is very difficult. 
Ensuring conditions that satisfy inequality (21) is also challenging, and even this does not completely 
eliminate errors associated with thermal resistance in heat transfer on the surface of the test sample. 

Table 1. 

Geometry of the 
Object 

Formula 

I. Flat plate 
a =

4l2

π2
b  

where: l is half the thickness of the plate 

I II. Infinite cylinder 
a =

4l2

π2
b  

where: l is half the thickness of the plate 

III. Sphere 
𝑎 =

𝑅2

5.783
𝑏  

where: 𝑅 is the radius of the cylinder 

IV. Finite cylinder 

a =
b

5.783
R2 +

π2

4l2

  

where: l is half the height of the cylinder with radius R 

V. Rectangular prism 

a =
b

π2

4 (
1
l1
2 +

1
l2
2 +

1
l3
2)

  

where: l1, l2, l3 are half the corresponding edge lengths 

VI. Orthotropic 
rectangular prism 

a1 = 6,76 l2 (27b1 − 7b2 − 5b3) ⋅ 10−3 

a2 = 135,3 l2 (b3 − b2) ⋅ 10−3 

a3 = 730,2 l2 (b2 − b1) ⋅ 10−3 

where 2l is the length of the shortest edge of the rectangular prisms with edge 
length proportions 1:2:3, 1:2:2, and 1:1:2, and 𝑏1, 𝑏2, 𝑏3 are the rates of 
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temperature change determined in experiments carried out for the 
mentioned rectangular samples. 

 

4.2. Modification of the Method Using a Two-Fluids Bath 

In the modified procedure, errors due to the finite Biot number are corrected [6]. This is achieved 
using the results of two experiments conducted under convective heat transfer conditions with different 
values of the heat transfer coefficient α, ensuring that the following defined proportionality coefficient is 
different from one:  

1 ≠ 𝑘 =
𝛼1

𝛼2

(24) 

These could be identical experiments carried out using two fluids with different physical properties [6, 7, 
8]. When determining the thermal diffusivity from the appropriate formulas (Table 1), coefficient b are 
replaced by the values calculated based on the corrected characteristic time of complementary 
experiments [5, 6]: 

𝜏𝑘𝑜𝑟 =
𝑘 ⋅ 𝜏1 − 𝜏2

𝑘 − 1
(25) 

𝑏 =
1

𝜏𝑐ℎ

(26) 

Times τ1 i τ2 are the characteristic times of temperature equalisation after immersion in the bath of the 
first and second fluids, respectively. The correction procedure corresponds to introducing a correction for 
the finite Biot number, i.e., a correction accounting for thermal resistance in heat transfer phenomena. 
The values of the proportionality coefficient for the case where fluid 1 is water and fluid 2 is ethanol are 
provided in Table 2. 

Table 2. Values of the proportionality coefficient 𝑘 =
𝛼𝑤𝑎𝑡𝑒𝑟

𝛼𝑒𝑡ℎ𝑎𝑛𝑜𝑙
 for identical forced convection velocities of 

water and ethanol as working fluids (data from [7]) 

Temperature [℃] Proportionality coefficient k 

0 2,85 

10 2,98 

20 3,13 

30 3,19 

40 3,26 

50 3,30 

 

5. Measurement System and Testing Procedure 

The optimal method for measurements using the modified monotonic thermal excitation method 
involves alternating experiments by immersing the test sample in baths of two different fluids. To conduct 
diffusivity tests, it is essential to enable:   

- placing the test sample in fluid environments with constant temperatures;   

- measuring and recording the temperature values with appropriate accuracy and sampling frequency. 

For this purpose, a measurement system was set up consisting of (Fig. 3):   

- two thermostats (low temperature ThermoHaake DC50 K35, low-temperature Lauda RL6CP or 
thermostats UTU-2, UTU-4);   
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- a data acquisition and processing card for thermoelectric measurements (twelve-channel NI 4350 card 
with TC 2190 terminal and USB interface, six-channel NI 4350 card with PCIMC connection, or six-section 
Keithley DAS TC card);   

- a personal computer. 

The samples tested can typically be in the shape of a cylinder (see Fig. 4), sphere, flat plate, or rectangular 
prism. For nonstandard cases, measurements can be performed on samples with irregular shapes. 
Temperature measurement in the experiment is carried out using type K thermocouples. Virtual 
instruments can be used to control the operation of the measurement system. The measured 
temperature change curves are recorded in the computer's memory as text files. 

 

Fig. 3. Schematic of a sample measurement system for thermal diffusivity studies using the "two-fluids" 
method. 

 

Fig. 4. View of samples suspended on a holder and prepared for immersion testing. 
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Fig. 5. View of thermostat baths (illustration of the testing procedure). 

 

Fig. 6. Example of signal recording from immersion tests: the rectangles indicate the signal segments 
used to calculate the characteristic times of the temperature equalisation process after immersion in 

water (red) and ethanol (blue). 

 

Fig. 7. Illustration of the data processing method for the temperature rise signal. 

 

As indicated previously, during the tests, the sample (or samples) is placed in the bath of fluid 1. After the 
temperature stabilises, it is transferred to the bath of fluid 2 at a different temperature (Fig. 5). The 
stabilisation and transfer procedure of the sample can be repeated several times (Fig. 6); however, two 
immersions are sufficient to determine the two elementary characteristic times. For analysis, a segment 
of the signal corresponding to the final 30% of the relative temperature drop or rise is "cut out" (see Fig. 
7). The data are approximated by the function: 
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𝑓(𝜏) = 𝑦0 + 𝐴 ⋅ 𝑒
(−

𝜏
𝜏𝑐ℎ

)
(27) 

Any data processing software can be used for calculations. However, it should be noted that a crucial 
element of the numerically implemented procedure is the preliminary rescaling of time to start at zero 
(subtracting the value corresponding to the first entry of the time column from each entry). After 
determining the characteristic times, the measured results can be used to calculate the time constant τ 
and diffusivity from formula (24), followed by the temperature change rate (25) and the diffusivity of the 
sample based on the appropriate relationship from Table 1 according to its type (sample shape). For 
repeatable studies, average times are used for calculations according to these formulas (24). 

 

6. Experimental Procedure 

After the instructor provides the recommended instrument settings, you should: 

Preparation for Testing   

1. Prepare the test logs.   

2. Measure the dimensions of the test sample(s). 

 

System Setup   

3. Turn on the thermostats and set the specified temperatures (recommended: water 20°C, ethanol 10°C).   

4. Connect the ends of the measurement thermocouples (sample and control thermocouples) to the data 
logger block.   

5. Turn on the computer and start the data acquisition programme. 

 

Performing the measurement 

6. Immerse the sample(s) in bath 1 and wait until the temperature of the sample stabilises (usually no 
longer than 20 minutes).   

7. Transfer the sample to bath 2 and wait until its temperature stabilises.   

8. Repeat the steps two to five times. 

 

Repeating the Measurement in Modified Conditions 

9. After changing the thermostat settings as agreed with the instructor, repeat the tests. 

 

Data Processing 

10. Determine the characteristic time value for each immersion experiment by analysing the signal 
segments corresponding to the final 30% of the temperature rise/fall.   

11. Calculate the average characteristic times of immersion experiments for each material tested.   

12. Determine the corrected time using the calculations from Step 9, times, relationship (24), and the 
average values of the proportionality coefficients from Table 2.   

13. Calculate the rate of change in temperature using formula (25) and the diffusivity of the test sample 
material using the appropriate relationship from Table 1 corresponding to its type (sample shape).   
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The prepared report should include information on the conditions of the tests performed, covering 
recorded measurement signals, results of characteristic time calculations, temperature change rate, 
thermal diffusivity, and, if provided by the instructor, data on other thermophysical parameters of the 
tested material. The report should be supplemented with diagrams that illustrate the results of the 
diffusivity measurement and the results of the error analysis. 
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