LABORATORIUM TERMODYNAMIKI

12 – Obliczanie rozkładu pola temperatury MRS

OPIS WYKONYWANIA ZADAŃ

Celem ćwiczenia jest określenie rozkładu pola temperatury w badanej próbce oraz wpływu przewodności cieplnej na ten rozkład za pomocą pakietu PDE (partial differential equations) działającego w środowisku MATLAB wykorzystującego metodę elementów skończonych.

1. SFORMUŁOWANIE PROBLEMU

Dana jest próbka w kształcie prostopadłościanu o wysokości H = 0,01 m i podstawie będącej kwadratem o boku b = 0,05 m wykonana z jednorodnego i izotropowego materiału o współczynniku przewodzenia ciepła $\lambda = 0,204$ W/(mK). Dolna powierzchnia próbki styka się z grzejnikiem elektrycznym o takim samym polu powierzchni co badana próbka, który w wyniku przepływu prądu elektrycznego o natężeniu I [A] i napięciu na nim U [V] generuje strumień ciepła o gęstości powierzchniowej

$$q = \frac{U \cdot I}{h^2} \tag{1}$$

Górna powierzchnia próbki zachowuje stałą temperaturę T_{wz} równą temperaturze chłodnicy przez którą przepływa woda z laboratoryjnego ultratermostatu. Boczne powierzchnie próbki są izolowane od otoczenia i traktowane jako powierzchnie adiabatyczne. Zakładając, że wymiana ciepła w próbce zachodzi tylko na drodze przewodzenia, pole temperatury w próbce $T = T(x,y,z,\tau)$ opisuje równanie różniczkowe cząstkowe typu parabolicznego postaci

$$\rho c_p \frac{\partial T}{\partial \tau} = div[\lambda(T)grad(T)]$$
⁽²⁾

gdzie ρ - gęstość ciała, kgm⁻³; c_p – ciepło właściwe przy stałym ciśnieniu, Jkg⁻¹K⁻¹ div – operator dywergencji (np. jeśli znamy pole wektorowe $\vec{F} = [F_x, F_y, F_z]$, to

$$div(\vec{F}) = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$
(3)

grad(T) – operator gradientu – $grad(T) = \frac{\partial T}{\partial x}\vec{i} + \frac{\partial T}{\partial y}\vec{j} + \frac{\partial T}{\partial z}\vec{k}$ (4)

Ponieważ równanie przewodzenia ciepła (2) jest pierwszego rzeędu po czasie τ oraz drugiego rzędu po współrzędnych przestrzennych więc dla jednoznaczności jego rozwiązania należy podać warunki graniczne w postaci warunków początkowych i brzegowych.:

- warunek początkowy (WP) :

$$T\Big|_{\tau=0} = T_0 \tag{5}$$

- warunki brzegowe (WB):

$$-\lambda \frac{\partial T}{\partial n}\Big|_{\Gamma_1} = q, \quad T\Big|_{\Gamma_3} = T_{w_2}, \quad \frac{\partial T}{\partial n}\Big|_{\Gamma_2} = \frac{\partial T}{\partial n}\Big|_{\Gamma_4} = 0$$
(6)

Gdzie $\frac{\partial T}{\partial n}$ jest pochodną temperatury w kierunku normalnym zewnętrznym do powierzchni, Γ_i oznaczają powierzchnie próbki.

W przypadku ustalonego przewodzenia ciepła nie wystepuje zależność temperatury od czasu, to

LABORATORIUM TERMODYNAMIKI

12 – Obliczanie rozkładu pola temperatury MRS

znaczy $\frac{\partial T}{\partial \tau} \equiv 0$. Jeśli dodatkowo przyjąć, (i) przewodność cieplna materiału próbki λ nie zależy od temperatury, (ii) przewodzenie ciepła odbywa się tylko wzdłuż grubości próbki *z*, wóczas zagadnienie początkowo-brzegowe (2), (5)-(6) upraszcza się do postaci

$$\frac{d^2 T}{dz^2} = 0$$

$$-\lambda \frac{dT}{dz}\Big|_{z=0} = q, \quad T\Big|_{z=H} = T_{wz}$$
(7)

którego rozwiązaniem jest

$$T(z) = \frac{q}{\lambda}(H-z) + T_{wz}$$
(8a)

Stąd widać, że najwyższa temperatura próbki występuje na powierzchni z = 0 i wynosi

$$T_{\max} = T(z=0) = \frac{q}{\lambda}H + T_{wz}$$
(8b)

2. WYKORZYSTANIE PAKIETU PDE DO OKREŚLENIA ROZKŁADU TEMPERATURY W PRÓBCE

W celu uruchomienia pakietu PDE należy:

- włączyć komputer, a następnie uruchomić program MATLAB, którego ikona znajduje się na pulpicie;
- po załadowaniu programu MATLAB i wpisaniu komendy [*pdetool*], pojawi się następujące okno

- wybrać typ zagadnienia z: [Options] \rightarrow [Application] \rightarrow [Heat Transfer]
- określić rozmiary osi: [Options] → [Access Limits] i wpisać

F

LABORATORIUM TERMODYNAMIKI

12 – Obliczanie rozkładu pola temperatury MRS

🥠 Axes Limits	<u>- 0 ×</u>
X-axis range:	🗖 Auto
[-0.01 0.06]	-
Y-axis range:	🗖 Auto
[-0.001 0.011]	
Apply	Close

- narysować na ekranie przekrój próbki wzdłuż jej grubości (kliknąc na znak prostokąta znajdującego się w górnym pasku pod {File], przenieść pointer na pole edycyjne, a następnie trzymając wciśnięty lewy przycisk "myszy" nasysowac prostokąt)
- udokładnić współrzędne prostokąta najeżdżając poiterm na narysowany prostokąt i klikając dwukrotnie lewym przyciskiem "myszy" wpisać w polu [Object Dialog] współrzedne lewego dolnego i prawego górnego wierzchołka prostokąta

🥠 Object Dialog		_ 🗆 ×	
Object type:	Rectangle		
Left:	0.0		
Bottom:	0.0		
Width:	0.05	-	
Height:	0.01		
Name:	R1		

- określić parametry termofizyczne materiału probki: kliknąć ikonę PDE znajdująca się w górnym pasku zadań w wyniku czego pojawi się następujące okno dialogowe

ype of PDE:	Coefficient	Value	Description
Elliptic	rho	1.0	Density
C Parabolic	C	1.0	Heat capacity
🔿 Hyperbolic	k	1.0	Coeff. of heat conduction
🖱 Eigenmodes	Q	1.0	Heat source
	h	1.0	Convective heat transfer coeff.
	Text	0.0	External temperature

W powyższym oknie [PDE Specification] zaznaczyć i wpisać: typ PDE - Elliptic (odpowiada to ustalonemu przewodzeniu ciepła) współczynnik przewodzenia ciepła (coeff of heat cond.) - k = 0.204gęstość wew. źródeł ciepła (heat source) - Q = 0.0

LABORATORIUM TERMODYNAMIKI

12 – Obliczanie rozkładu pola temperatury MRS

współczynnik przejmowania ciepła (convective heat transf. coef.) - h = 0.0 temperatura zew. (external temperature) - Text = T_{wz}

określić warunki brzegowe: kliknąć ikonę ∂Ω, pojawi sie brzeg obszaru
 Po dwukrotnym kliknięciu widocznych linii pojawi sieokno dialogowe [Boundary Condition]

Boundary conditior	nequation: n*k	*grad(T)+q*T=g	
Condition type:	Coefficien	Value	Description
Neumann	g	450.0	Heat flux
C Dirichlet	q	0.0	Heat transfer coefficient
	h	1	Weight
	r	0	Temperature

Dla dolnej linii prostkąta (zadana gęstość strumienia ciepła) zaznaczyć typ warunku brzegowego (condition type) jako warunek II-go rodzaju, czyli – Neuman

wpisać, gęstość strumienia ciepła (heat flux) – $g = U*I/b^2$ (U, I, z pomiarów) wpisać, współczynnik przejmowania ciepła (Heat transf. coeff) - q = 0.0, OK.

Dla górnej linii prostokąta (zadana stała temperatura $T=T_{wz}$) zaznaczyć typ warunku brzegowego (condition type) – Dirichlet wpisać, waga (weight) - h = 1

wpisać, temperatura - $r = T_{wz} (z \text{ pomiarów})$

Dla pozostałych dwóch boków zaznaczyć [Neuman] i wpisać g = 0.0, q = 0.0

- pokryć obszar siatką elementów skończonych, klikając na ikonę w kształcie trójkąta

Jeżeli gęstość siatki elementów skończonych jest zbyt mała, to zagęścić siatke klikając na ikonę w kształcie trójkąt w trójkacie

- uruchomic solver, klikając na ikonę (=)

- wybrac sposób zobrazowania rozwiązania: [Plot] \rightarrow [Parameters]

Plot type:	Property:	User entry:	Plot style:
Z Color Z Contour	temperature	•	interpolated shad.
Arrows	temperature gradient	•	proportional
Deformed mesh	temperature gradient	•	
Height (3-D plot)	[temperature	-	continuous
Animation	Options		
Plot in x-y grid	Contour plot levels: 2	0 F	Plot solution automatically
Show mesh	Colormap: cool	_	

zaznaczyć w opcji [Plot type] : Color + Contour

wybrać w opcji [Property] wielkość do wizualizacji : Temperature albo Heat flux kliknąć [Plot]

3. PRZEBIEG ĆWICZENIA

- 3.1. Przejść do stanowiska laboratoryjnego na którym przeprowadza się pomiar współczynnika przewodzenia ciepła (ćw. lab. nr 7) i odczytać:
 - U = [V] - napięcie na grzejniku
 - napięcie na grzejniku
 natężenie prądu w grzejniku I = [A]
 - temperaturę chłodnicy z wodą zimną $U_{wz} = \dots \dots [mV] \implies T_{wz} = \dots \dots [^{o}C]$
- 3.2. Obliczyć gęstość strumienia ciepła: $q = \eta \frac{U \cdot I}{0.0025}$, gdzie η współczynnik strat. Przyjąć początkowo $\eta = 1.0$
- 3.3. Uruchomić MATLAB i wpisać [pdetool]
- 3.4. Wyznaczyć stacjonarne pole temperatury (pkt. 2). Rozwiązanie numeryczne na powierzchni z = 0 (naprowadzic poiter na dolny bok prostokąta i kliknąć lewy przycisk "myszy") porównać z rozwiązaniem analitycznym (8b).
- 3.5. Odczytać temperaturę Tg próbki od strony grzejnika (ćw. lab. nr 7). W wyniku porównania zmierzonej i obliczonej temperatury wyznaczyć wspołczynnik strat $-\eta$
- 3.6. Korzystając z pakietu PDE określić:
 - wpływ przewodności cieplnej na rozkład temperatury w próbce (określić T_{max} - T_{min} dla λ_1 = 0,204 W/(mK), $\lambda_2 = 2,04$ W/(mK));

12 – Obliczanie rozkładu pola temperatury MRS

wpływ współczynnika przejmowania ciepła α na pole temperatury (w opcji [Boudary Condition] założyć, że na brzegu x=b występuje warunek brzegowy

 $-\lambda \frac{\partial T}{\partial x}\Big|_{x=b} = \alpha(T - T_{wz})$. Porównując to wyrażenie ze wzorem $n \cdot kgrad(T) + qT = g$ widzimy, że $g = \alpha \cdot T_{wz}$, $q = \alpha$. Przyjąć $\alpha = 10$ W/(m²K) i wydrukować izotermy temperatury

3.7. Wyznaczyć przy pomocy PDE niestacjonarny rozkład temperatury w próbce, przyjmując:

gęstość materiału $\rho = 1200 \text{ kg/m}^3$

przewodność cieplna $\lambda = 0,204$ W/(mK)

ciepło właściwe przy stałym ciśnieniu $c_p = 800 \text{ J/(kgK)}$

wsp. przejmowania ciepła na powierzchni x = b, $\alpha = 50 \text{ W}/(\text{m}^2\text{K})$

temperatura początkowo T(x, y, 0) = 20.0 ⁰C

czas końcowy t_f = 150 s

W s k a z ó w k a: Zaznaczyć (<u>Parabolic</u>) w [PDE] \rightarrow [PDE Specification] i wpisać wartości podanych parametrów

3.8. Określić jak zmienia się $(T_{max} - T_{min})$ jeśli zwiększymy 2-krotnie

przewodność cieplna λ

ciepło właściwe przy stałym ciśnieniu c_p