SYLABUS PRZEDMIOTU

NAZWA PRZEDMIOTU: Oprogramowanie systemów awionicznych
Wersja anglojęzyczna: Software for Avionics Systems
Kod przedmiotu: WMLLAWSM–Osa
Podstawowa jednostka organizacyjna (PJO): Wydział Mechatroniki i Lotnictwa
(prowadząca kierunek studiów)
Kierunek studiów: Lotnictwo i kosmonautyka
Specjalność: Awionika
Poziom studiów: studia drugiego stopnia dla kandydatów na ż.z
Forma studiów: studia stacjonarne
Język prowadzenia: polski
Sylabus ważny dla naborów od roku akademickiego: 2013/2014

1. REALIZACJA PRZEDMIOTU

Osoby prowadzące zajęcia (koordynatorzy): dr inż. Zdzisław ROCHALA,
kpt. mgr inż. Konrad WOJTOWICZ
PJO/instytut/katedra/zakład: Wydział Mechatroniki i Lotnictwa, Instytut Techniki Lotniczej, Zakład Awioniki i Uzbrojenia Lotniczego

2. ROZLICZENIE GODZINOWE

<table>
<thead>
<tr>
<th>semestr</th>
<th>forma zajęć, liczba godzin/rygor</th>
<th>punkty ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x egzamin, + zaliczenie na ocenę, z zaliczen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>razem</td>
<td>wykłady</td>
</tr>
<tr>
<td>II</td>
<td>40</td>
<td>16+</td>
</tr>
<tr>
<td>razem</td>
<td>40</td>
<td>16</td>
</tr>
</tbody>
</table>

3. PRZEDMIOTY WPROWADZAJĄCE WRAZ Z WYMACANIAI WSTĘPNYMI

- wybrane działy matematyki: umiejętność formułowania zagadnień matematycznych przy rozwiązywaniu problemów naukowo-technicznych,
- modelowanie i podstawy identyfikacji: znajomość podstawowych pojęć z zakresu modelowania i identyfikacji, umiejętność wyznaczania modeli ciągłych i dyskretnych,
- dynamika i sterowanie statków powietrznych: umiejętność formułowania uproszczonych modeli matematycznych z układami sterowania oraz stosowania właściwie dobranych narzędzi komputerowych do symulacji ich właściwości dynamicznych,
architektury systemów awionicznych: umiejętność formułowania specyfikacji i założeń technicznych na elementy składowe systemu awionicznego z uwzględnieniem m.in. norm środowiskowych.

4. ZAKŁADANE EFEKTY KSZTAŁCENIA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Efekty kształcenia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Student, który zaliczył przedmiot,</td>
</tr>
<tr>
<td>W1</td>
<td>zna i rozumie metody modelowania i projektowania oprogramowania systemów komputerowych i modułów awionicznych</td>
</tr>
<tr>
<td>W2</td>
<td>ma wiedzę z zakresu oprogramowania systemowego, użytkowego i narzędziowego oraz o trendach rozwojowych i najistotniejszych nowych osiągnięciach w zakresie systemów operacyjnych i technik budowy oprogramowania przeznaczonych do stosowania w lotnictwie</td>
</tr>
<tr>
<td>U1</td>
<td>potrafi rozwiązywać problemy techniczne z zastosowaniem dostępnych środków oraz potrafi wykorzystać poznanie metody do modelowania i projektowania oprogramowania modułów statku powietrznego</td>
</tr>
<tr>
<td>U2</td>
<td>potrafi projektować oprogramowanie z uwzględnieniem zadań kryteriów użytkowych wykorzystując narzędzia do modelowania i wspomagania projektowania oprogramowania</td>
</tr>
<tr>
<td>U3</td>
<td>potrafi dokonać właściwego doboru i oceny przydatności specjalistycznego oprogramowania komputerowego do modelowania UML i wspomagania projektowania oprogramowania oraz wykorzystać jego możliwości do budowy oprogramowania</td>
</tr>
</tbody>
</table>

5. METODY DYDAKTYCZNE

- Wykłady ilustrowane prezentacjami komputerowymi Power Point w celu dostarczenia wiedzy określonej efektami W1 i W2.
- Ćwiczenia audytoryjne polegające na indywidualnej i grupowej budowie fragmentów oprogramowania z wykorzystanie zintegrowanych środowisk programistycznych w celu opanowania umiejętności U1, U2 i U3.

6. TREŚCI PROGRAMOWE

<table>
<thead>
<tr>
<th>lp</th>
<th>temat/tematyka zajęć</th>
<th>liczba godzin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>wykl.</td>
</tr>
<tr>
<td>1.</td>
<td>Charakterystyka podstawowych wymagań dotyczących oprogramowania modułów awionicznych zdefiniowanych w normach DO-178B i DO-248B.</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Podstawowe założenia przyjmowane podczas projektowania bezpiecznego oprogramowania.</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Przegląd systemów operacyjnych wykorzystywanych w lotnictwie i środowisk programistycznych do projektowania aplikacji uruchamianych pod ich kontrolą.</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Definiowanie, klasyfikacja i specyfikacja wymagań oraz charakterystyka metod modelowania w procesie projektowania oprogramowania.</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>Przegląd faz modelowania w języku UML. Faza rozpoczęcia i kolejne iteracje fazy opracowywania.</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>Charakterystyka specjalistycznego oprogramowania do</td>
<td>2</td>
</tr>
<tr>
<td>TEMAĆY ĆWICZEŃ RACHUNKOWYCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1. Wykorzystanie funkcji środowiska programistycznego Visual Studio do modelowania w języku UML.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2. Metody wykonywania aplikacji na podstawie wymagań z uwzględnieniem kolejnych faz modelowania w języku UML. Faza rozpoczęcia.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3. Metody wykonywania modelu aplikacji na podstawie wymagań z uwzględnieniem kolejnych faz modelowania w języku UML. Iteracje fazy opracowywania.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4. Generacja kodu z modelu UML. Zastosowanie wygenerowanego kodu do budowy aplikacji.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5. Wykorzystanie mechanizmu obsługi wyjątków w programowaniu obiektowym.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6. Zastosowanie klas i składowych statycznych.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7. Odczyt i zapis danych na dysku, asynchroniczne operacje wejścia i wyjścia.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8. Zastosowanie delegatów i zdarzeń.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9. Wykonanie projektu aplikacji na podstawie przedstawionych wymagań – model UML.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10. Wykonanie projektu aplikacji na podstawie przedstawionych wymagań – budowa aplikacji.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11. Wykorzystanie zintegrowanych narzędzi programistycznych do zarządzania cyklem życia oprogramowania.</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

7. LITERATURA

podstawowa:
- Sacha K.: *Inżynieria oprogramowania*, PWN, Warszawa 2010,
- Larmam C.: *UML i wzorce projektowe*, Helion, Gliwice 2011,
- Liberty J.: *C#. Programowanie*, Helion, Gliwice 2006,
- Troelsen A.: *Język C# 2008 i platforma .NET 3.5*, PWN, Warszawa 2009,

uzupełniająca:
- http://msdn.com/vcsharp

8. SPOSOBY WERYFIKACJI ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA

Przedmiot zaliczany jest na podstawie: zaliczenia z oceną.
- Zaliczenie na ocenę jest przeprowadzane w formie pisemnego testu sprawdzającego z zadaniem i zamkniętymi.
- Warunkiem dopuszczenia do zaliczenia jest uzyskanie pozytywnej oceny z zaliczenia ćwiczeń oraz pozytywne oceny za wszystkie efekty kształcenia.
- Zaliczenie ćwiczeń na ocenę odbywa się na podstawie średniej z pozytywnych ocen uzyskanych z odpowiedzi na pytania kontrolne i z zadań związanych z projektowaniem aplikacji realizowanych w trakcie zajęć.
- **Efekt W1** sprawdzany w trakcie ćwiczeń rachunkowych i na kolokwium pisemnym, przy okazji sprawdzania umiejętności U1 i U2. Ocena za osiągnięcie tego efektu jest przyznawana łącznie za osiągnięcie umiejętności U1 i U2. Sprawdzana jest wiedza w zakresie modelowania UML poprzez analizę trafności przelożenia przedstawionych wymagań na schemat aplikacji.

- **Efekt W2** sprawdzany jest w trakcie ćwiczeń rachunkowych przy okazji sprawdzania umiejętności U1 i U2 oraz na kolokwium pisemnym. Sprawdzana jest wiedza w zakresie znajomości współczesnych technik programistycznych, technik modelowania oprogramowania oraz systemów operacyjnych stosowanych w lotniczym:

<table>
<thead>
<tr>
<th>Ocena</th>
<th>Opis umiejętności</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0 (db)</td>
<td>Rozumie większość omawianych na wykładzie technik modelowania, projektowania i programowania oraz potrafi samodzielnie znaleźć dla nich zastosowanie do rozwiązania zadanego problemu. W zakresie omawianym na wykładzie ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach w zakresie systemów operacyjnych i technik budowy oprogramowania przeznaczonych do stosowania w lotnictwie.</td>
</tr>
<tr>
<td>4,5 (db+)</td>
<td>Rozumie większość omawianych na wykładzie technik modelowania, projektowania i programowania oraz potrafi znaleźć dla nich zastosowanie do rozwiązania zadanego problemu korzystając sporadycznie z pomocy prowadzącego. W większości zagadnień omawianych na wykładzie ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach w zakresie systemów operacyjnych i technik budowy oprogramowania przeznaczonych do stosowania w lotnictwie.</td>
</tr>
<tr>
<td>4,0 (db)</td>
<td>Potrafi zbudować model UML na podstawie przedstawionych wymagań. W większości zagadnień omawianych na wykładzie ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach w zakresie systemów operacyjnych i technik budowy oprogramowania przeznaczonych do stosowania w lotnictwie.</td>
</tr>
<tr>
<td>3,5 (db+)</td>
<td>Potrafi zastosować model UML do generowania struktury aplikacji. W wybranych zagadnieniach omawianych na wykładzie ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach w zakresie systemów operacyjnych i technik budowy oprogramowania przeznaczonych do stosowania w lotnictwie.</td>
</tr>
<tr>
<td>3,0 (db)</td>
<td>Rozumie pojęcia modelowania i projektowania oprogramowania. W wybranych zagadnieniach omawianych na wykładzie ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach w zakresie systemów operacyjnych i technik budowy oprogramowania przeznaczonych do stosowania w lotnictwie.</td>
</tr>
</tbody>
</table>

- **Efekty U1 i U2** sprawdzane są w trakcie ćwiczeń rachunkowych. Sprawdzana jest umiejętność samodzielnego projektowania i budowy, w języku obiektowym, aplikacji z interfejsem graficznym, realizujących przedstawione przez prowadzącego zadania:

<table>
<thead>
<tr>
<th>Ocena</th>
<th>Opis umiejętności</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0 (db)</td>
<td>Potrafi samodzielnie zaprojektować i zbudować model w języku UML na podstawie przedstawionych wymagań a następnie wykorzystać go do budowy aplikacji w pełni zgodnej z wymaganiami. Potrafi dokonać właściwego doboru i oceny przydatności specjalistycznego oprogramowania komputerowego do modelowania UML i wspomagania projektowania oprogramowania. Potrafi zdefiniować problem i opracować model i program badań.</td>
</tr>
<tr>
<td>4,5 (db+)</td>
<td>Potrafi samodzielnie zaprojektować i zbudować model w języku UML na podstawie przedstawionych wymagań a następnie wykorzystać go do budowy aplikacji w większości zgodnej z wymaganiami. Potrafi samodzielnie dokonać właściwego doboru i oceny przydatności specjalistycznego oprogramowania komputerowego do modelowania UML. Potrafi zdefiniować problem i opracować program testowania.</td>
</tr>
<tr>
<td>4,0 (db)</td>
<td>Potrafi samodzielnie zaprojektować i zbudować model w języku UML na podstawie przedstawionych wymagań a następnie wykorzystać go do budowy aplikacji częściowo zgodnej z wymaganiami. Potrafi samodzielnie zidentyfikować potrzebne do wykonywania zadania funkcje specjalistycznego oprogramowania do modelowania UML. Potrafi zdefiniować problem i opracować program algorytm jego rozwiązania.</td>
</tr>
<tr>
<td>3,0 (db)</td>
<td>Potrafi zaprojektować i zbudować model w języku UML na podstawie przedstawionych wymagań, korzystając z pomocy prowadzącego. Korzysta z określonych funkcji specjal-</td>
</tr>
</tbody>
</table>
- Efekt U3 sprawdzany jest w trakcie ćwiczeń rachunkowych. Ocena za osiągnięcie tego efektu jest przyznawana łącznie za osiągnięcie umiejętności U1 i U2. Sprawdzana jest umiejętność przygotowania do poszczególnych zajęć korzystając z dostępnej literatury i dokumentacji oraz umiejętność posilowania się dokumentacją oprogramowania narzędziowego wykorzystywanego do modelowania i programowania.

Autor(rzy) sylabusa

Dr inż. Zdzisław ROCHALA

Dyrektor
Instytutu Techniki Lotniczej

Dr hab. inż. Stanisław WRZESIEŃ